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Abstract: In this article, we study the eigenvalues and potential functions of Sturm-Liouville operators with ordinary separated-type
boundary condition. When the gap of the first two eigenvalues reaches minimum, we give the specific form of potential function.
Meanwhile, for step potential function, we establish an one-to-one relationship between the eigenval ues and the nonnegative real roots

of aclass of algebraic equation, which provide an effective method for the approximate cal culation of eigenvalues.
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1. Introduction

convex. In 2003, Miklas Horvéath got rid of the assump-
tion that the potential function must be convex (see [4]).

Theeigenvalues of Sturm-Liouville operators such as Schradirtjewever, owing to the restriction of methods of study, the

operators acting on [0, 7] are corresponding to the energy
lever of the quantum state of particles. So, it isameaning-
ful work to calculate the eigenvalues of Sturm-Liouville
operators, especially, the gap of the first two eigenvalues,
which stands for the energy of excited state of particles.
While, attributing to the restriction of mathematical meth-
ods, it is a challenging work to calculate the exact value
of eigenvalues. Therefore, the estimate of eigenvalues, es-
pecialy, the gap of the first two eigenvalues of Sturm-
Liouville operators and the description about the form of
corresponding potential functions have been receiving more
and more attention from scholars recently.
For Sturm-Liouville problems:
—y" +o(x)y =Ny, z € [0, 7] (1.1)
y(0) = y(m) = 0or/(0) = /() = 0, '

Singer, Wong, You gave a lower bound of the gap of the
first two eigenvaluesto S-L problem (1.1) in [1-2]. Mean-
while, they described the form of the corresponding poten-
tial function. In 1994, Richard, Lavine obtained the opti-
mal lower bound of the gap of the first two eigenvalues to
S-L problem (1.1). Simultaneously, they depicted the form
of the corresponding potential function (see[3]). But they
all relied on the assumption that the potential function is

foregoing results on Sturm-Liouville operators with ordi-
nary separated type boundary condition have not been ad-
dressed so far.

Stimulated by [1-12], in this article, we study the S-L
problem:

—y" +v(x)y = Ay, = € [0,7]
y(0)cosa + y'(0)sina =0
y(m)cos f+ ' (m)sin § = 0,

(1.2)

where v(x) is a single-well function (see definition 2.1),
a, B € (0,7). Owing to the complicacy of the boundary
condition, it is very difficult to calculate the exact value
of eigenvaluesto S-L problem (1.2). In this article, we fo-
cus on the estimate of the optimal lower bound of the gap
of the first two eigenvalues to S-L problem (1.2) and the
description about the form of the optimal potentia func-
tion(see definition 2.2).

Meanwhile, under step potential function, we estab-
lish one-to-one relationship between the eigenvalues of S-
L problem (1.3) and the real roots of a class of agebraic
equation, which makesthe approximate cal cul ation of eigen-
valuesto S-L problem (1.3) into redlity.
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Therest of thisarticle is organized asfollows. In section 2, we give the explicit form of the optimal potential function
of S-L problem (1.2). In section 3, Considering S-L problem:

"+ q(x)y = Ay, v €0, 7]
y(0)cosa+ ¢ (0)sina =0 (1.3)
y(m)cos B+ y'(m)sin B = 0,

where o, 8 € (0, 7) and

_fm, z€0,7/2]
o) ={ s 0 (L)
where m and n are al real number. We establish an one-to-one relationship between the eigenvalues to the S-L problem
(1.3) and the nonnegative real rootsto aclass of agebraic equation. An example and numerical simulations are presented
in the final section.

2. The Optimal Potential Functions of Sturm-Liouville Operators

In this section, we will give the explicit form of the optimal potential function of S-L problem (2.1).
Definition 2.1 We call function v a single-well function on [0, 7], if v is decreasing on [0, w/2] and increasing on
[ /2, 7]. The notation below will be used through this article:

SWio, ;) = {v(x) : v(x) is a single — well function on [0, 7]}.

Definition 2.2 Consider S-L problem

—y" +v(z)y = Ay, z € [0, 7]
y(0)cosa+ y'(0)sina =0 (2.1)
y(m)cos B4y (m)sin 5 = 0,
wherev € SWi, 1, a, 3 € (0,7), \1(v), A2(v) arethefirst and the second eigenvalue to S-L problem (2.1), respectively.
Denote G(v) = A2(v) — A1 (v). if there exists v, such that

Glwo) = _ Juf  G),

we call function vy an optimal potential function of S-L problem (2.1).
Theorem 2.1(see[4]) For S-L problem

_y// + U(.I‘,t) = /\ya S [Ovﬂ-]
Li(y)=0 (2.2)
La(y) = 0.

Suppose that A, (¢) is the n-th eigenvalue to S-L problem (2.2) and u,,(x,t) is corresponding to the n-th normalizing
eigenfunction, then

d/\n(t)dt:/ v (x, t)otu? (z,t)dx.
0

Lemma 2.1 Suppose that u; (), us(x) are the first and the second eigenfunction of S-L problem (2.1), we can show
that us (2)uy (x) is strictly monotonous decreasing on [0, r].

proof : Sinceu; (x) isthefirst eigenfunction of S-L problem (2.1), there are not zero points of u, () on [0, 7], and we
can suppose u (z) > 0 (uq(x) < 0issimilar). And because us (z) isthe second eigenfunction of S-L problem (2.1), there
exists only one zero point of us () on [0, 7], denoted by x¢, then, uz(x) > 0, whilex € [0, z¢) and uz(x) < 0, whilex €
(xo, w]. Next, we show (usz(z)ui(x)) < 0, foreveryz € [0,7].

Since )
(we(@)un (@) = wh(w)n (2) = (2)uz(@) e ()],
note that
A g s (@) — (2o ()] = [ () — o (@) — [ () (0) = 4 (O)uaO)],
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with the boundary condition y(0) cos & + 3/(0) sinaw = 0 and v € (0, ), we can obtain [u}(0)u1(0) — u} (0)u2(0)] = 0.
Considering w4 (z)uq(z) — uff (z)uz(z) = (A — A2)ua(z)uz(z). Then, when 0 < z < z, we have

(ua(e)a(@) = whlur(z) = vy @) = 13 (@) [ (A1 = Aaus(w)us(o)lde <0

0
On the other hand,

/W[U’z'(x)ul(x) — uff (w)ug(x)]dz = [u(m)us () — ) (m)ua(m)] = [ug()us (z) — vl (2)uz(2)],

with the boundary condition y(7) cos G+ /(7)) sin 8 = 0 and 5 € (0, ), we can derive u) (m)uq (1) — u) (m)ua(7) =
0. So,

/ W[U/Q/ ()ur(2) — uf (2)uz(2)]dr = —[ug(2)ur () — ui (x)uz(2)].
Then

T

(uz(2)ur (@) = uh(@)us (z) - ()ua(@)[ur (2)]* = —1U%($)/ [uf (z)ua (2) — uy (2)uz(2)]d.

x

Note that u}) (z)u(x) — uf (z)uz(x) = (A1 — A2)us (z)uz(x). Then, when 2y < = < 7, we have

(u2(2)ur (2))" = up(@)ur(z) — ) (2)uz(@)ur (2)]* = ~1ui(2) /ﬂ[(M — Ag)us (2)uz(z)]dz < 0.

This completes the proof.

Lemma 2.2 Assume that u; (z), uz(x) are the first and the second normalizing eigenfunction of S-L problem (2.1),
respectively, then the equation u? (z) = u3(x) has at least one solution and at most two solutionsin (0, 7).

proof: (1) Thereis at least one solution to the equation u? (x) = u3(z) in (0, 7).

Since [, uf(z)dz = [ u3(z)dx = 1, thereis at least one solution to the equation u3 (z) = u3(x) in (0, 7).

(2)Thereis at most two solutions to the equation u?(z) = u3(x) in (0, 7).

By the lemma 2.1, u2(z)u?(x) is strictly monotonous decreasing in (0, z;), and strictly monotonous increasing in
(w0, 7). Assumethat 21, 2o, (0 < 21 < 2 < ) aretwo different solutions to the equation u? (z) = u2(x), then

uj(z1)ui (1) = u3(w2)us (22),

which is a contradiction. So, in (0, ), there exists at most one solution to the equation u?(z) = wu3(x). Using similar
arguments as above, we can show that there exists at most one solution of the equation u3(z) = u3(z) in (zo, 7). SO,
thereis at most two solutions to the equation u?(z) = u3(z) in (0, 7). This completes the proof of Lemma 2.2.

Definition 2.3 (1) If for agiven potential function v(z) € SWjy, ., the equation uf(x) = u3(x) hastwo solutionsin
(0,7), where uy (z), uz () arethefirst and the second normalizing eigenfunction of S-L problem (2.1), then, we call the
potential function v(x) the first class of potential function, and the set of all these potential functionsis denoted by PF7.
(2) If for agiven potential function v(z) € SWj ,, the equation u$(x) = u3(x) has only one solution in (0, 7), where
up(x), ue(x) are the first and the second normalizing eigenfunction of S-L problem (2.1), then we call the potential
function v(x) the second class of potential function, and the set of all these potential functionsis denoted by PFj;.

By Lemma 2.1 and 2.2, we can easily obtain the following result.

Lemma 2.3 Suppose that u; (), us(x) are the first and the second normalizing eigenfunction of S-L problem (2.1),
then
(1) If v € PFy, thenfor uy(x) and us(x) thereisonly one caseto consider, that is, thereexist z, z— (0 < z_ < zy <)

such that
{ug(l‘) —ui(z) >0, z € (0,2-) U(z4,7)
—ul(x) <0, € (zv_,zq).

(2) If v € PFyy, then, then for u; («) and uz () there are only following two cases to consider.
(i) Existing «* € (0, 7) such that

u3(x) —ui(z) >0, =€ (0,z.)
uz(x) —ui(x) <0, x € (z4,m).
(i)Existing z* € (0, 7) such that

ud(x) —ui(x) <0, x € (0,z4)
ud(r) —ud(x) >0, = € (z4,m).
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Lemma2.4Define Ay = {V:0<V <M, Ve SWj n} then Ay C SWy, - and Ay isaconvex set.

proof: By the definition of Ay, Ay C SWyg, - isobvious. Next, we show that A, isaconvex set. For al vy, vy €
Ay andfor every t € [0, 1], wehave 0 < tvy + (1 — t)vs < M. And because tv; € SWyg, A, (1 —t)va € SWg, A, We
have tvy + (1 —t)vy € SWig, 4. Thus, tvg + (1 — t)ve € Apr, Nnamely, Ay isaconvex set.

Lemma 2.5 Define v(z,t) = tvi(z) + (1 — t)vg(x),t € [0,1], vo(x),vi(x) € Ap, Where vo(z) is the optimal
potential function, A1 (t), \2(¢) are the first and the second eigenvalue to S-L problem

_y// + U(.l?,t) = >\ya MS [0771-]
y(0)cosa+ ¢/ (0) sina =0
y(m)cos f+ ¢ (m)sin 5 = 0.

Then, we have B
d(A2(t) — A1 (t))dt = /O [v1(2) = vo(@)][u3 (2, t) — uf (2, t)]da

and ~
0 < d(X2(t) = A (1)) dt|i=0 = /0 [v1(x) = vo(2)][u3(z) — ui(z)]da.

Proof: By theorem 2.1, we have

d(A2(t) — A1 (2))dt = /077 Ov(w, t)ot[us(x,t) — ui(x,t)|de = /OW[Ul(:r) — vo(@)][ui(x, 1) — ui(x,t)]dz.

When ¢ = 0, we have v(z,t) = v(z,0) = vo(z). Since vy(z) is the optimal potential function, Az (v(zx,0)) —
A1 (v(x,0)) reaches minimum, thus, along with the increase of t, Ao (v(z,t)) — A1 (v(x, t)) will beincrease, so

0 < d(Aa(t) = Ai(t))dtli=0 = /Ow[vl(w) — vo(a)][uz () — ui(x)]de.

Thisfinishes the proof.

Next, we give the first main result of this article.

Theorem 2.2 Supposethat A1 (v), A\2(v), (v € Aps) arethefirst and the second eigenvalue to S-L problem (2.1), then
the optimal potential function of S-L problem (2.1) must be a step function on [0, 7].

proof: By [4], the optimal potential function of S-L problem (2.1) exists, when v(x) € A, and we denote it by vy.
Next, we will discuss the explicit form of vy from the following two cases.

Casel. vy € PFy

By lemma 2.3, thereexist v and z_ (0 < x_ < x4 < m) such that

ud(z) —ud(z) > 0, z € (0,z_)J(xy,m)
{ug(w)—U%(wKO, z € (2, 24), ’ (2.3)

where, uy (), us(x) are the first and the second normalizing eigenfunction. Here, only to consider the following two
Cases.
Q) z_-<m2<zi(r_ <7m2<x,issmilar)

- () [0,7/2]
volz_), € |0,7/2
vi(z) = {vo(x+), x € (n/2,7].
Obviously, v (z) € A, and
{Ul(x) —vo(z) <0, z € (0,z_)U(z4,m) (2.4)
vi(x) —wvo(x) >0, € (x_,z4)

By lemma 2.5, the following result

(© 2012 NSP
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holds. That is

/(o,m_) Um’ﬁ)(vl(x) — vo(x))(u3(w) — ui(2))dz + /(z_’m(vl(x) —vo(x))(uj(2) — ui(2))dz > 0. (2.5)

By (2.3) and (2.4), (2.5) holds if and only if vy(z) = vy (x). Thus, vo(x) must be a step function with the following

form:
_ v (l‘_), T e [077'('/2]
vo(z) = {vg(er), x € (7/2,7].

2 w/2<x_ (xy <m/2issimilar)
Let
— UO(W2)7 T e [O,ZL’_]

vi(x) = {vo(x+), r € (z_,m|.

Analogously, by the same methods of (1), we can obtain vy = v;. Furthermore, we can also choose

0, z€|0,z_
(@) = {M, xee[ (;v,,]w].

By lemma 2.5, we have

thatis

/0 " R(2) = u2(2))dz > 0. (2.7)
While,
| @)~ uinas =0,

/ (ud(z) — u(z))dz < 0. (2.8)
By (2.7) and (2.8), (2.6) holds if and only if vy(72) = 0 and vo(z) = M. Namely, vo(z) must be a step function as

following
_JO, xe0,2_]
vo(w) = {M, x € (z_, 7.

Case2.vg € PFyr. (By lemma2.3, we only consider case (i), and case (ii) is similar)
1 o0<a*<nw/2
We choose
_ Jwo(x*), ze[0,7/2]
vi(@) = {M, v € (m)2,7). (2.9)

Analogously, by lemma 2.5, we have

0< / " (0n() — v0(@) (2 (x) — w3(x))da

K

= /Ox (v1(2) — vo())(u3(z) — ui(w))dz + / (v1(2) = vo(2)) (u3(x) — i (w))da. (2.10)
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By (2.9) and the definition of «*, (2.10) holds if and only if vy(x) = v1(z), namely, vo(z) must be a step function as

following
w = {m e
(2) «* >n/2
Now let

by the lemma 2.5, we can obtain that

- / " (01(2) — o) (u3(0) — )+ / (01(0) — @) (03(2) — () (2.11)
because of 0 < vy < M and the definition of z*, (2.11) holdsif and only if

0, x€[0,z*
vo(e) = { PR

So, comprehensive case 1 and case 2, and the optimal potential function of S-L problem (2.1) must be a step function
on [0, w]. This completes the proof.

3. Eigenvalues of Sturm-Liouville Operators

In this section, we first establish an one-to-one relationship between the eigenvalues to the S-L problem (3.1) and the
nonnegative real roots to a class of algebraic equations, which made the approximate calculation of eigenvalues to S-L
problem (3.1) into reality.

we first consider S-L problem:

y(0) cosa+ y'(0) sina =0 (3.1)

=" +q(x)y = Ay, x € [0, 7]
y(m)cos B+ y () sin 5 = 0,

wherea, 5 € (0,7) and

_)Jm, € [O,:E }
q(z) = {n, x € (mo,ﬁ].

For the sake of simplicity and convenience in the following expression, the notations below will be used in this section:
Co(Ny) = cos(VA —ay), S.(\y) =sin(vVA—zy),
Fo 5(\) = VA = ncos(VA — n) sin 8 + sin(vA — nr) cos 3,
Gr, g(A\) = VA —nsin(vA — nr)sin 8 — cos(vVA — nr) cos 3,

We then have the following result.

Theorem 3.1 Eigenvalues to S-L problem (3.1) are corresponding to the nonnegative rea roots of the following
algebraic equation

VA =mCh (A, xg) — cot aS, (A, z9)(A —m)Sm (A, zo) + VA — mcot aCh, (N, x0)
= Sn(A, 0)Gp, g(A) + Cr( A\, 20)Fr, s(AN) VA —nSp(A, 20)F, g(A) — VA —nCh(A, 20)Gr, 3(N)3.2

Proof: Since y(x) = ¢; cos vV A — ma + co sin v/ A — ma isthe general solution to the boundary value problem:

—y" +my =Xy, z € [0,z (3.3)
y(0) cosar+ ' (0) sina = 0, :

where m isapositive integer, « € [0, 7. By the boundary value condition y(0) cos & 4+ ' (0) sin « = 0, it follows that

c1cosa+ cavVA—msina = 0.

(© 2012 NSP
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Then
¢y = —cq cot vV A — m.
So, the general solution of boundary value problem(3.2) can be written as
y1(x) = ¢1 cos VA — ma — ¢1 cot av/ X — msin VA — maz.
For boundary value problem:
—y" +ny = Ay, x € (o, 7] (3.4)
y(m) cos 5+ y/ () sin § = 0, '
similar to above methods, we can write the general solution of boundary value problem (3.3) as

Yo () = dy cos VA — nz + d; VA — nsin VA — nmsin 8 — cos VA — nrcos VA — ncos VA — nrsin 3

+sin VA —nmcos Bsin vV — nx.
Then, the solution of boundary value problem (3.1) can be further simplified as

_ [ui(@), 2 € [0,]
y(w) = {yg(:n), x € (o, 7. (3.5)
The constants ¢;, d; have to be chosen such that y(z) is C*—smooth at . This can be done if and only if the quotients
y'y, counted in ¢ from both sides, are the same, that is, when
VA —=mCr (A, o) — cot S, (A, 0)(A —m)Sm (A, zo) + VA — mcot aChpy (A, x0)
= Sn(A, 0)Ghp, g(A) + Cp (A, 20)Fr, g(MVA —nSn(A, 20)Fy, 5(A) = VA = nChr(A, 20)Gp, g(A), 3.6
the eigenvalues of S-L problem (3.1) are the nonnegative real solutions of equation (3.6). Theorem 3.1 is proved.

4. Example and Numerical Simulation

1 I\
I 1 T — 2 e [i
\ 2
|

Figure 1 Thefirst four eigenvaluesin[0,2]

Figure 2 All eigenvaluesinR

In this section, we give an example for Theorem 3.1 and cal cul ate the approximates of its eigenvalues.
We consider S-L problem

—y" +q(z)y = Ay, = € [0,7]
y(0) cosm3 + 4/ (0) sin73 = 0

y(m) cos 3 + ¢/ (m) sinw3 = 0,
where

oz) {1, z € [0,7/2]

0, z € (w/2,m].

© 2012 NSP
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By Theorem 3.1, the eigenvalues to S-L problem (4.1) are the nonnegative real roots of the following equation:

3V A — Tcos(VA — 127) — V3sin(v/A — 127)3(A — 1) sin(v/A — 127) + /3(A — 1) cos(vV/A — 127)
= V3X cos(VA27) + sin(vV/A27)v/3Asin(3v/A27) — VA cos(v/A2r) (4.2)

Using Matlab, we can calculate the approximates of nonnegative real roots to equation (4.2), thus, we obtain the
approximates of eigenvaluesto S-L problem (4.1). Here, astraightforward cal cul ation shows the approximates of the first
four eigenvalues. Ay =~ 0.2791, A\ ~ 0.4085, A3 =~ 0.4898, \4, ~ 1.3225 (see Figure 1). Meanwhile, we can validate
that the number of the eigenvaluesto S-L problem (4.1) isinfinite and all eigenval ues are nonnegative (see Figure 2).
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