

Mathematical Sciences Letters An International Journal

> © 2012 NSP Natural Sciences Publishing Cor.

The Eigenvalues and The Optimal Potential Functions of **Sturm-Liouville Operators**

Huili Xiang, Zuxiong Li and Zhijun Liu

Department of Mathematics, Hubei University for Nationalities Enshi, Hubei 445000, China

Received: 8 Jan. 2012; Revised 17 May 2012; Accepted 21 July 2012 Published online: 1 Sep. 2012

Abstract: In this article, we study the eigenvalues and potential functions of Sturm-Liouville operators with ordinary separated-type boundary condition. When the gap of the first two eigenvalues reaches minimum, we give the specific form of potential function. Meanwhile, for step potential function, we establish an one-to-one relationship between the eigenvalues and the nonnegative real roots of a class of algebraic equation, which provide an effective method for the approximate calculation of eigenvalues.

Keywords: Sturm-Liouville operators; eigenvalues; potential function.

1. Introduction

operators acting on $[0, \pi]$ are corresponding to the energy lever of the quantum state of particles. So, it is a meaningful work to calculate the eigenvalues of Sturm-Liouville operators, especially, the gap of the first two eigenvalues, which stands for the energy of excited state of particles. While, attributing to the restriction of mathematical methods, it is a challenging work to calculate the exact value of eigenvalues. Therefore, the estimate of eigenvalues, especially, the gap of the first two eigenvalues of Sturm-Liouville operators and the description about the form of corresponding potential functions have been receiving more and more attention from scholars recently.

For Sturm-Liouville problems:

$$\begin{cases} -y'' + v(x)y = \lambda y, \ x \in [0, \pi] \\ y(0) = y(\pi) = 0 \ or \ y'(0) = y'(\pi) = 0, \end{cases}$$
(1.1)

Singer, Wong, You gave a lower bound of the gap of the first two eigenvalues to S-L problem (1.1) in [1-2]. Meanwhile, they described the form of the corresponding potential function. In 1994, Richard, Lavine obtained the optimal lower bound of the gap of the first two eigenvalues to S-L problem (1.1). Simultaneously, they depicted the form of the corresponding potential function (see [3]). But they all relied on the assumption that the potential function is

convex. In 2003, Miklás Horváth got rid of the assumption that the potential function must be convex (see [4]). The eigenvalues of Sturm-Liouville operators such as Schrödingowever, owing to the restriction of methods of study, the foregoing results on Sturm-Liouville operators with ordi-

nary separated type boundary condition have not been addressed so far.

Stimulated by [1-12], in this article, we study the S-L problem:

$$\begin{cases} -y'' + v(x)y = \lambda y, \ x \in [0,\pi] \\ y(0)\cos\alpha + y'(0)\sin\alpha = 0 \\ y(\pi)\cos\beta + y'(\pi)\sin\beta = 0, \end{cases}$$
(1.2)

where v(x) is a single-well function (see definition 2.1), $\alpha, \beta \in (0, \pi)$. Owing to the complicacy of the boundary condition, it is very difficult to calculate the exact value of eigenvalues to S-L problem (1.2). In this article, we focus on the estimate of the optimal lower bound of the gap of the first two eigenvalues to S-L problem (1.2) and the description about the form of the optimal potential function(see definition 2.2).

Meanwhile, under step potential function, we establish one-to-one relationship between the eigenvalues of S-L problem (1.3) and the real roots of a class of algebraic equation, which makes the approximate calculation of eigenvalues to S-L problem (1.3) into reality.

^{*} Corresponding author: e-mail: xianghuili@126.com

The rest of this article is organized as follows. In section 2, we give the explicit form of the optimal potential function of S-L problem (1.2). In section 3, Considering S-L problem:

$$\begin{cases} -y'' + q(x)y = \lambda y, \ x \in [0, \pi] \\ y(0)\cos\alpha + y'(0)\sin\alpha = 0 \\ y(\pi)\cos\beta + y'(\pi)\sin\beta = 0, \end{cases}$$
(1.3)

where $\alpha, \beta \in (0, \pi)$ and

$$q(x) = \begin{cases} m, \ x \in [0, \pi/2] \\ n, \ x \in (\pi/2, \pi], \end{cases}$$
(1.4)

where m and n are all real number. We establish an one-to-one relationship between the eigenvalues to the S-L problem (1.3) and the nonnegative real roots to a class of algebraic equation. An example and numerical simulations are presented in the final section.

2. The Optimal Potential Functions of Sturm-Liouville Operators

In this section, we will give the explicit form of the optimal potential function of S-L problem (2.1).

Definition 2.1 We call function v a single-well function on $[0, \pi]$, if v is decreasing on $[0, \pi/2]$ and increasing on $[\pi/2, \pi]$. The notation below will be used through this article:

$$SW_{[0,\pi]} = \{v(x) : v(x) \text{ is a single} - well \text{ function on } [0,\pi]\}.$$

Definition 2.2 Consider S-L problem

$$\begin{cases} -y'' + v(x)y = \lambda y, \ x \in [0, \pi] \\ y(0)\cos\alpha + y'(0)\sin\alpha = 0 \\ y(\pi)\cos\beta + y'(\pi)\sin\beta = 0, \end{cases}$$
(2.1)

where $v \in SW_{[0, \pi]}, \alpha, \beta \in (0, \pi), \lambda_1(v), \lambda_2(v)$ are the first and the second eigenvalue to S-L problem (2.1), respectively. Denote $G(v) = \lambda_2(v) - \lambda_1(v)$. if there exists v_0 such that

$$G(v_0) = \inf_{v \in SW_{[0,\pi]}} G(v)$$

we call function v_0 an optimal potential function of S-L problem (2.1).

Theorem 2.1(see[4]) For S-L problem

$$\begin{cases} -y'' + v(x,t) = \lambda y, \ x \in [0,\pi] \\ L_1(y) = 0 \\ L_2(y) = 0. \end{cases}$$
(2.2)

Suppose that $\lambda_n(t)$ is the n-th eigenvalue to S-L problem (2.2) and $u_n(x,t)$ is corresponding to the n-th normalizing eigenfunction, then

$$d\lambda_n(t)dt = \int_0^\pi \partial v(x,t)\partial t u_n^2(x,t)dx.$$

Lemma 2.1 Suppose that $u_1(x)$, $u_2(x)$ are the first and the second eigenfunction of S-L problem (2.1), we can show that $u_2(x)u_1(x)$ is strictly monotonous decreasing on $[0, \pi]$.

proof : Since $u_1(x)$ is the first eigenfunction of S-L problem (2.1), there are not zero points of $u_1(x)$ on $[0, \pi]$, and we can suppose $u_1(x) > 0$ ($u_1(x) < 0$ is similar). And because $u_2(x)$ is the second eigenfunction of S-L problem (2.1), there exists only one zero point of $u_2(x)$ on $[0, \pi]$, denoted by x_0 , then, $u_2(x) > 0$, while $x \in [0, x_0)$ and $u_2(x) < 0$, while $x \in (x_0, \pi]$. Next, we show $(u_2(x)u_1(x))' < 0$, for every $x \in [0, \pi]$.

Since

$$\left(u_2(x)u_1(x)\right)' = u_2'(x)u_1(x) - u_1'(x)u_2(x)[u_1(x)]^2,$$

note that

$$\int_0^x [u_2''(x)u_1(x) - u_1''(x)u_2(x)]dx = [u_2'(x)u_1(x) - u_1'(x)u_2(x)] - [u_2'(0)u_1(0) - u_1'(0)u_2(0)],$$

© 2012 NSP Natural Sciences Publishing Cor.

with the boundary condition $y(0) \cos \alpha + y'(0) \sin \alpha = 0$ and $\alpha \in (0, \pi)$, we can obtain $[u'_2(0)u_1(0) - u'_1(0)u_2(0)] = 0$. Considering $u_{2}'(x)u_{1}(x) - u_{1}''(x)u_{2}(x) = (\lambda_{1} - \lambda_{2})u_{1}(x)u_{2}(x)$. Then, when $0 \le x < x_{0}$, we have

$$\left(u_2(x)u_1(x)\right)' = u_2'(x)u_1(x) - u_1'(x)u_2(x)[u_1(x)]^2 = 1u_1^2(x)\int_0^x [(\lambda_1 - \lambda_2)u_1(x)u_2(x)]dx < 0.$$

On the other hand.

$$\int_{x}^{\pi} [u_{2}''(x)u_{1}(x) - u_{1}''(x)u_{2}(x)]dx = [u_{2}'(\pi)u_{1}(\pi) - u_{1}'(\pi)u_{2}(\pi)] - [u_{2}'(x)u_{1}(x) - u_{1}'(x)u_{2}(x)],$$

with the boundary condition $y(\pi) \cos \beta + y'(\pi) \sin \beta = 0$ and $\beta \in (0, \pi)$, we can derive $u'_2(\pi)u_1(\pi) - u'_1(\pi)u_2(\pi) = 0$ 0. So,

$$\int_{x}^{x} [u_{2}''(x)u_{1}(x) - u_{1}''(x)u_{2}(x)]dx = -[u_{2}'(x)u_{1}(x) - u_{1}'(x)u_{2}(x)].$$

Then

$$(u_2(x)u_1(x))' = u_2'(x)u_1(x) - u_1'(x)u_2(x)[u_1(x)]^2 = -1u_1^2(x)\int_x^{\pi} [u_2''(x)u_1(x) - u_1''(x)u_2(x)]dx.$$

Note that $u_2''(x)u_1(x) - u_1''(x)u_2(x) = (\lambda_1 - \lambda_2)u_1(x)u_2(x)$. Then, when $x_0 < x \leq \pi$, we have

$$(u_2(x)u_1(x))' = u_2'(x)u_1(x) - u_1'(x)u_2(x)[u_1(x)]^2 = -1u_1^2(x)\int_x^{\pi} [(\lambda_1 - \lambda_2)u_1(x)u_2(x)]dx < 0.$$

This completes the proof.

Lemma 2.2 Assume that $u_1(x), u_2(x)$ are the first and the second normalizing eigenfunction of S-L problem (2.1), respectively, then the equation $u_1^2(x) = u_2^2(x)$ has at least one solution and at most two solutions in $(0, \pi)$.

proof: (1) There is at least one solution to the equation $u_1^2(x) = u_2^2(x)$ in $(0, \pi)$. Since $\int_0^{\pi} u_1^2(x) dx = \int_0^{\pi} u_2^2(x) dx = 1$, there is at least one solution to the equation $u_1^2(x) = u_2^2(x)$ in $(0, \pi)$. (2) There is at most two solutions to the equation $u_1^2(x) = u_2^2(x)$ in $(0, \pi)$.

By the lemma 2.1, $u_2^2(x)u_1^2(x)$ is strictly monotonous decreasing in $(0, x_0)$, and strictly monotonous increasing in (x_0,π) . Assume that $x_1, x_2, (0 < x_1 < x_2 < x_0)$ are two different solutions to the equation $u_1^2(x) = u_2^2(x)$, then

$$u_2^2(x_1)u_1^2(x_1) = u_2^2(x_2)u_1^2(x_2),$$

which is a contradiction. So, in $(0, x_0)$, there exists at most one solution to the equation $u_1^2(x) = u_2^2(x)$. Using similar arguments as above, we can show that there exists at most one solution of the equation $u_1^2(x) = u_2^2(x)$ in (x_0, π) . So, there is at most two solutions to the equation $u_1^2(x) = u_2^2(x)$ in $(0, \pi)$. This completes the proof of Lemma 2.2.

Definition 2.3 (1) If for a given potential function $v(x) \in SW_{[0,\pi]}$, the equation $u_1^2(x) = u_2^2(x)$ has two solutions in $(0,\pi)$, where $u_1(x), u_2(x)$ are the first and the second normalizing eigenfunction of S-L problem (2.1), then, we call the potential function v(x) the first class of potential function, and the set of all these potential functions is denoted by PF_I . (2) If for a given potential function $v(x) \in SW_{[0,\pi]}$, the equation $u_1^2(x) = u_2^2(x)$ has only one solution in $(0,\pi)$, where $u_1(x), u_2(x)$ are the first and the second normalizing eigenfunction of S-L problem (2.1), then we call the potential function v(x) the second class of potential function, and the set of all these potential functions is denoted by PF_{II} .

By Lemma 2.1 and 2.2, we can easily obtain the following result.

Lemma 2.3 Suppose that $u_1(x), u_2(x)$ are the first and the second normalizing eigenfunction of S-L problem (2.1), then

(1) If $v \in PF_I$, then for $u_1(x)$ and $u_2(x)$ there is only one case to consider, that is, there exist x_+, x_- ($0 < x_- < x_+ \le \pi$) such that

$$\begin{bmatrix} u_2^2(x) - u_1^2(x) > 0, & x \in (0, x_-) \bigcup (x_+, \pi) \\ u_2^2(x) - u_1^2(x) < 0, & x \in (x_-, x_+). \end{bmatrix}$$

(2) If $v \in PF_{II}$, then, then for $u_1(x)$ and $u_2(x)$ there are only following two cases to consider. (i) Existing $x^* \in (0, \pi)$ such that

$$\begin{cases} u_2^2(x) - u_1^2(x) > 0, \ x \in (0, x_*) \\ u_2^2(x) - u_1^2(x) < 0, \ x \in (x_*, \pi). \end{cases}$$

(ii)Existing $x^* \in (0, \pi)$ such that

$$\begin{cases} u_2^2(x) - u_1^2(x) < 0, \ x \in (0, x_*) \\ u_2^2(x) - u_1^2(x) > 0, \ x \in (x_*, \pi). \end{cases}$$

Lemma 2.4 Define $A_M = \{V : 0 \le V \le M, V \in SW_{[0, \pi]}\}$, then $A_M \subset SW_{[0, \pi]}$ and A_M is a convex set. **proof:** By the definition of $A_M, A_M \subset SW_{[0, \pi]}$ is obvious. Next, we show that A_M is a convex set. For all $v_1, v_2 \in SW_{[0, \pi]}$ A_M and for every $t \in [0, 1]$, we have $0 \le tv_1 + (1 - t)v_2 \le M$. And because $tv_1 \in SW_{[0, \pi]}$, $(1 - t)v_2 \in SW_{[0, \pi]}$, we have $tv_1 + (1-t)v_2 \in SW_{[0, \pi]}$. Thus, $tv_1 + (1-t)v_2 \in A_M$, namely, A_M is a convex set. **Lemma 2.5** Define $v(x,t) = tv_1(x) + (1-t)v_0(x), t \in [0,1], v_0(x), v_1(x) \in A_M$, where $v_0(x)$ is the optimal

potential function, $\lambda_1(t), \lambda_2(t)$ are the first and the second eigenvalue to S-L problem

$$\begin{cases} -y'' + v(x,t) = \lambda y, \ x \in [0,\pi] \\ y(0)\cos\alpha + y'(0)\sin\alpha = 0 \\ y(\pi)\cos\beta + y'(\pi)\sin\beta = 0. \end{cases}$$

Then, we have

$$d(\lambda_2(t) - \lambda_1(t))dt = \int_0^\pi [v_1(x) - v_0(x)][u_2^2(x, t) - u_1^2(x, t)]dx$$

and

$$0 \le d(\lambda_2(t) - \lambda_1(t))dt|_{t=0} = \int_0^\pi [v_1(x) - v_0(x)][u_2^2(x) - u_1^2(x)]dx.$$

Proof: By theorem 2.1, we have

$$d(\lambda_2(t) - \lambda_1(t))dt = \int_0^\pi \partial v(x,t)\partial t [u_2^2(x,t) - u_1^2(x,t)]dx = \int_0^\pi [v_1(x) - v_0(x)][u_2^2(x,t) - u_1^2(x,t)]dx.$$

When t = 0, we have $v(x,t) = v(x,0) = v_0(x)$. Since $v_0(x)$ is the optimal potential function, $\lambda_2(v(x,0)) - v_0(x)$ $\lambda_1(v(x,0))$ reaches minimum, thus, along with the increase of t, $\lambda_2(v(x,t)) - \lambda_1(v(x,t))$ will be increase, so

$$0 \le d(\lambda_2(t) - \lambda_1(t))dt|_{t=0} = \int_0^\pi [v_1(x) - v_0(x)][u_2^2(x) - u_1^2(x)]dx$$

This finishes the proof.

Next, we give the first main result of this article.

Theorem 2.2 Suppose that $\lambda_1(v), \lambda_2(v), (v \in A_M)$ are the first and the second eigenvalue to S-L problem (2.1), then the optimal potential function of S-L problem (2.1) must be a step function on $[0, \pi]$.

proof: By [4], the optimal potential function of S-L problem (2.1) exists, when $v(x) \in A_M$, and we denote it by v_0 . Next, we will discuss the explicit form of v_0 from the following two cases.

Case1. $v_0 \in PF_I$

By lemma 2.3, there exist x_+ and x_- ($0 < x_- < x_+ < \pi$) such that

$$\begin{cases} u_2^2(x) - u_1^2(x) > 0, \ x \in (0, x_-) \bigcup (x_+, \pi) \\ u_2^2(x) - u_1^2(x) < 0, \ x \in (x_-, x_+), \end{cases}$$
(2.3)

where, $u_1(x)$, $u_2(x)$ are the first and the second normalizing eigenfunction. Here, only to consider the following two cases.

(1) $x_{-} \le \pi 2 < x_{+}(x_{-} < \pi 2 \le x_{+} \text{ is similar})$ Let

$$v_1(x) = \begin{cases} v_0(x_-), & x \in [0, \pi/2] \\ v_0(x_+), & x \in (\pi/2, \pi]. \end{cases}$$

Obviously, $v_1(x) \in A_M$, and

$$\begin{cases} v_1(x) - v_0(x) \le 0, \ x \in (0, x_-) \bigcup (x_+, \pi) \\ v_1(x) - v_0(x) \ge 0, \ x \in (x_-, x_+). \end{cases}$$
(2.4)

By lemma 2.5, the following result

$$\int_0^{\pi} (v_1(x) - v_0(x))(u_2^2(x) - u_1^2(x))dx \ge 0$$

holds. That is

$$\int_{(0,x_{-})} \bigcup_{(x_{+},\pi)} (v_1(x) - v_0(x)) (u_2^2(x) - u_1^2(x)) dx + \int_{(x_{-},x_{+})} (v_1(x) - v_0(x)) (u_2^2(x) - u_1^2(x)) dx \ge 0.$$
(2.5)

By (2.3) and (2.4), (2.5) holds if and only if $v_0(x) = v_1(x)$. Thus, $v_0(x)$ must be a step function with the following form:

$$v_0(x) = \begin{cases} v_0(x_-), & x \in [0, \pi/2] \\ v_0(x_+), & x \in (\pi/2, \pi] \end{cases}$$

(2) $\pi/2 < x_- (x_+ < \pi/2 \text{ is similar})$ Let

$$v_1(x) = \begin{cases} v_0(\pi 2), & x \in [0, x_-] \\ v_0(x_+), & x \in (x_-, \pi]. \end{cases}$$

Analogously, by the same methods of (1), we can obtain $v_0 = v_1$. Furthermore, we can also choose

$$v_1(x) = \begin{cases} 0, \ x \in [0, x_-] \\ M, \ x \in (x_-, \pi]. \end{cases}$$

By lemma 2.5, we have

$$\int_0^{\pi} (v_1(x) - v_0(x))(u_2^2(x) - u_1^2(x))dx \ge 0$$

that is

$$0 \leq \int_{0}^{\pi} (v_{1}(x) - v_{0}(x))(u_{2}^{2}(x) - u_{1}^{2}(x))dx = -v_{0}(\pi 2) \int_{0}^{x_{-}} (u_{2}^{2}(x) - u_{1}^{2}(x))dx + (M - v_{0}(x_{+})) \int_{x_{-}}^{x_{-}} (u_{2}^{2}(x) - u_{1}^{2}(x))dx.$$

$$(2.6)$$

Then, by the definition of x_{-} , we have

$$\int_{0}^{x_{-}} (u_{2}^{2}(x) - u_{1}^{2}(x))dx > 0.$$
(2.7)

While,

so,

$$\int_{0}^{\pi} (u_{2}^{2}(x) - u_{1}^{2}(x))dx = 0,$$

$$\int_{x_{-}}^{\pi} (u_{2}^{2}(x) - u_{1}^{2}(x))dx < 0.$$
 (2.8)

By (2.7) and (2.8), (2.6) holds if and only if $v_0(\pi 2) = 0$ and $v_0(x_+) = M$. Namely, $v_0(x)$ must be a step function as following

$$v_0(x) = \begin{cases} 0, \ x \in [0, x_-] \\ M, \ x \in (x_-, \pi]. \end{cases}$$

Case 2. $v_0 \in PF_{II}$. (By lemma 2.3, we only consider case (i), and case (ii) is similar) (1) $0 < x^* \le \pi/2$ We choose

$$v_1(x) = \begin{cases} v_0(x^*), & x \in [0, \pi/2] \\ M, & x \in (\pi/2, \pi]. \end{cases}$$
(2.9)

Analogously, by lemma 2.5, we have

$$0 \leq \int_{0}^{\pi} (v_{1}(x) - v_{0}(x))(u_{2}^{2}(x) - u_{1}^{2}(x))dx$$
$$= \int_{0}^{x^{*}} (v_{1}(x) - v_{0}(x))(u_{2}^{2}(x) - u_{1}^{2}(x))dx + \int_{x^{*}}^{\pi} (v_{1}(x) - v_{0}(x))(u_{2}^{2}(x) - u_{1}^{2}(x))dx.$$
(2.10)

By (2.9) and the definition of x^* , (2.10) holds if and only if $v_0(x) = v_1(x)$, namely, $v_0(x)$ must be a step function as following

$$v_0(x) = \begin{cases} n_1, & x \in [0, \pi/2] \\ n_2, & x \in (\pi/2, \pi]. \end{cases}$$

(2) $x^* > \pi/2$ Now let

$$v_1(x) = \begin{cases} 0, \ x \in [0, x^*] \\ M, \ x \in (x^*, \pi], \end{cases}$$

by the lemma 2.5, we can obtain that

$$0 \leq \int_{0}^{\pi} (v_{1}(x) - v_{0}(x))(u_{2}^{2}(x) - u_{1}^{2}(x))dx$$
$$= \int_{0}^{x^{*}} (v_{1}(x) - v_{0}(x))(u_{2}^{2}(x) - u_{1}^{2}(x))dx + \int_{x^{*}}^{\pi} (v_{1}(x) - v_{0}(x))(u_{2}^{2}(x) - u_{1}^{2}(x))dx, \qquad (2.11)$$

because of $0 \le v_0 \le M$ and the definition of x^* , (2.11) holds if and only if

$$v_0(x) = \begin{cases} 0, \ x \in [0, x^*] \\ M, \ x \in (x^*, \pi]. \end{cases}$$

So, comprehensive case 1 and case 2, and the optimal potential function of S-L problem (2.1) must be a step function on $[0, \pi]$. This completes the proof.

3. Eigenvalues of Sturm-Liouville Operators

In this section, we first establish an one-to-one relationship between the eigenvalues to the S-L problem (3.1) and the nonnegative real roots to a class of algebraic equations, which made the approximate calculation of eigenvalues to S-L problem (3.1) into reality.

we first consider S-L problem:

$$\begin{cases} -y'' + q(x)y = \lambda y, \ x \in [0, \pi] \\ y(0)\cos\alpha + y'(0)\sin\alpha = 0 \\ y(\pi)\cos\beta + y'(\pi)\sin\beta = 0, \end{cases}$$
(3.1)

where $\alpha, \beta \in (0, \pi)$ and

$$q(x) = \begin{cases} m, \ x \in [0, x_0] \\ n, \ x \in (x_0, \pi] \end{cases}$$

For the sake of simplicity and convenience in the following expression, the notations below will be used in this section:

$$C_x(\lambda, y) = \cos(\sqrt{\lambda - xy}), \quad S_x(\lambda, y) = \sin(\sqrt{\lambda - xy}),$$

$$F_{n, \beta}(\lambda) = \sqrt{\lambda - n}\cos(\sqrt{\lambda - n\pi})\sin\beta + \sin(\sqrt{\lambda - n\pi})\cos\beta,$$

$$G_{n, \beta}(\lambda) = \sqrt{\lambda - n}\sin(\sqrt{\lambda - n\pi})\sin\beta - \cos(\sqrt{\lambda - n\pi})\cos\beta,$$

We then have the following result.

Theorem 3.1 Eigenvalues to S-L problem (3.1) are corresponding to the nonnegative real roots of the following algebraic equation

 $\sqrt{\lambda - m}C_m(\lambda, x_0) - \cot \alpha S_m(\lambda, x_0)(\lambda - m)S_m(\lambda, x_0) + \sqrt{\lambda - m} \cot \alpha C_m(\lambda, x_0)$ = $S_n(\lambda, x_0)G_{n, \beta}(\lambda) + C_n(\lambda, x_0)F_{n, \beta}(\lambda)\sqrt{\lambda - n}S_n(\lambda, x_0)F_{n, \beta}(\lambda) - \sqrt{\lambda - n}C_n(\lambda, x_0)G_{n, \beta}(\lambda)3.2$ **Proof:** Since $y(x) = c_1 \cos \sqrt{\lambda - mx} + c_2 \sin \sqrt{\lambda - mx}$ is the general solution to the boundary value problem:

$$\begin{cases} -y'' + my = \lambda y, \ x \in [0, x_0] \\ y(0) \cos \alpha + y'(0) \sin \alpha = 0, \end{cases}$$
(3.3)

where m is a positive integer, $\alpha \in [0, \pi]$. By the boundary value condition $y(0) \cos \alpha + y'(0) \sin \alpha = 0$, it follows that

$$c_1 \cos \alpha + c_2 \sqrt{\lambda - m} \sin \alpha = 0.$$

130

Then

$$c_2 = -c_1 \cot \alpha \sqrt{\lambda - m}.$$

So, the general solution of boundary value problem(3.2) can be written as

$$y_1(x) = c_1 \cos \sqrt{\lambda - mx} - c_1 \cot \alpha \sqrt{\lambda - m} \sin \sqrt{\lambda - mx}.$$

For boundary value problem:

$$\begin{cases} -y'' + ny = \lambda y, \ x \in (x_0, \pi] \\ y(\pi) \cos \beta + y'(\pi) \sin \beta = 0, \end{cases}$$
(3.4)

131

similar to above methods, we can write the general solution of boundary value problem (3.3) as

$$y_2(x) = d_1 \cos \sqrt{\lambda - n} x + d_1 \sqrt{\lambda - n} \sin \sqrt{\lambda - n} \pi \sin \beta - \cos \sqrt{\lambda - n} \pi \cos \beta \sqrt{\lambda - n} \cos \sqrt{\lambda - n} \pi \sin \beta + \sin \sqrt{\lambda - n} \pi \cos \beta \sin \sqrt{\lambda - n} x.$$

Then, the solution of boundary value problem (3.1) can be further simplified as

$$y(x) = \begin{cases} y_1(x), \ x \in [0, x_0] \\ y_2(x), \ x \in (x_0, \pi]. \end{cases}$$
(3.5)

The constants c_1 , d_1 have to be chosen such that y(x) is C^1 -smooth at x_0 . This can be done if and only if the quotients y'y, counted in x_0 from both sides, are the same, that is, when

 $\sqrt{\lambda - m} C_m(\lambda, x_0) - \cot \alpha S_m(\lambda, x_0)(\lambda - m) S_m(\lambda, x_0) + \sqrt{\lambda - m} \cot \alpha C_m(\lambda, x_0)$ = $S_n(\lambda, x_0) G_{n, \beta}(\lambda) + C_n(\lambda, x_0) F_{n, \beta}(\lambda) \sqrt{\lambda - n} S_n(\lambda, x_0) F_{n, \beta}(\lambda) - \sqrt{\lambda - n} C_n(\lambda, x_0) G_{n, \beta}(\lambda), 3.6$ the eigenvalues of S-L problem (3.1) are the nonnegative real solutions of equation (3.6). Theorem 3.1 is proved.

4. Example and Numerical Simulation

Figure 1 The first four eigenvalues in [0,2]

Figure 2 All eigenvalues in R

In this section, we give an example for Theorem 3.1 and calculate the approximates of its eigenvalues. We consider S-L problem

$$\begin{cases} -y'' + q(x)y = \lambda y, \ x \in [0, \pi] \\ y(0) \cos \pi 3 + y'(0) \sin \pi 3 = 0 \\ y(\pi) \cos \pi 3 + y'(\pi) \sin \pi 3 = 0, \end{cases}$$

$$q(x) = \begin{cases} 1, \ x \in [0, \pi/2] \\ 0, \ x \in (\pi/2, \pi]. \end{cases}$$
(4.1)

where

By Theorem 3.1, the eigenvalues to S-L problem (4.1) are the nonnegative real roots of the following equation:

$$3\sqrt{\lambda - 1}\cos(\sqrt{\lambda - 1}2\pi) - \sqrt{3}\sin(\sqrt{\lambda - 1}2\pi)3(\lambda - 1)\sin(\sqrt{\lambda - 1}2\pi) + \sqrt{3(\lambda - 1)}\cos(\sqrt{\lambda - 1}2\pi)$$
$$= \sqrt{3\lambda}\cos(\sqrt{\lambda}2\pi) + \sin(\sqrt{\lambda}2\pi)\sqrt{3\lambda}\sin(3\sqrt{\lambda}2\pi) - \sqrt{\lambda}\cos(\sqrt{\lambda}2\pi)$$
(4.2)

Using Matlab, we can calculate the approximates of nonnegative real roots to equation (4.2), thus, we obtain the approximates of eigenvalues to S-L problem (4.1). Here, a straightforward calculation shows the approximates of the first four eigenvalues: $\lambda_1 \approx 0.2791$, $\lambda_2 \approx 0.4085$, $\lambda_3 \approx 0.4898$, $\lambda_4 \approx 1.3225$ (see Figure 1). Meanwhile, we can validate that the number of the eigenvalues to S-L problem (4.1) is infinite and all eigenvalues are nonnegative (see Figure 2).

Acknowledgements

This work is supported by the Key Project of Chinese Ministry of Education(No.210134, No.212111) and the Innovation Term of Hubei University for Nationalities(No.MY2011T007).

References

- [1] W.Kirsch and B.simon. Universal lower bounds on eigenvalue splittings for one dimensional *schrödinger* operators. Comm.Math.phys. 1985, 97(2): 453-460.
- [2] R.Benguria. A note on the Gap between the first two eigenvalue for the schrödinger operator. J.Phys.A. 1986,19(1): 477-478.
- [3] Richard Lavin. The eigenvalue gap for one-dimensional convex potentials. Proceedings of the American mathematical Society. 1994, 121 (3): 895-906.
- [4] Miklás Horváth. On the first two eigenvalues of Sturm-Liouville operators. Proceedings of the American mathematical society. 2003, 131(4): 1215-1224.
- [5] Richard Lavin. The eigenvalues gap for one dimensional convex potentials of the American mathematical Society. 1995, 124 (4): 815-821.
- [6] Paul A. Binding. The spectrum of the periodic p-Laplacian. J.Differentia Equations. 235 (2007):199-218.
- [7] P.O.Hryniv. Trainsformation operators for Sturm-Liouville operators with singular potentials. Math.Phys.Anal.Geom. 7 (2004):119-149.
- [8] G.N. Hile, M.H. Protter, Inequalities for eigenvalues of the Laplacian, Indiana Univ. Math. J. 29 (1980) 523-538.
- [9] D.Chen, Q.-M. Chen, Extrinsic estimates for eigenvalues of the Laplace operator, J. Math. Soc. Japan 60 (2008) 325-339.
- [10] Q.-M. Chen, H.C. Yang, Estimates on eigenvalues of Laplacian, Math. Ann. 331 (2005) 445-460.
- [11] Q.-M. Chen, H.C. Yang, Inequalities for eigenvalues of a clamped plate problem, Trans. Amer. Math. Soc. 358 (2006) 2625-2635.
- [12] I.Chavel, Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984.

S NS