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Abstract: In this article, we study the eigenvalues and potential functions of Sturm-Liouville operators with ordinary separated-type
boundary condition. When the gap of the first two eigenvalues reaches minimum, we give the specific form of potential function.
Meanwhile, for step potential function, we establish an one-to-one relationship between the eigenvalues and the nonnegative real roots
of a class of algebraic equation, which provide an effective method for the approximate calculation of eigenvalues.
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1. Introduction

The eigenvalues of Sturm-Liouville operators such as Schrödinger
operators acting on [0, π] are corresponding to the energy
lever of the quantum state of particles. So, it is a meaning-
ful work to calculate the eigenvalues of Sturm-Liouville
operators, especially, the gap of the first two eigenvalues,
which stands for the energy of excited state of particles.
While, attributing to the restriction of mathematical meth-
ods, it is a challenging work to calculate the exact value
of eigenvalues. Therefore, the estimate of eigenvalues, es-
pecially, the gap of the first two eigenvalues of Sturm-
Liouville operators and the description about the form of
corresponding potential functions have been receiving more
and more attention from scholars recently.

For Sturm-Liouville problems:

{−y′′ + v(x)y = λy, x ∈ [0, π]
y(0) = y(π) = 0 or y′(0) = y′(π) = 0, (1.1)

Singer, Wong, You gave a lower bound of the gap of the
first two eigenvalues to S-L problem (1.1) in [1-2]. Mean-
while, they described the form of the corresponding poten-
tial function. In 1994, Richard, Lavine obtained the opti-
mal lower bound of the gap of the first two eigenvalues to
S-L problem (1.1). Simultaneously, they depicted the form
of the corresponding potential function (see [3]). But they
all relied on the assumption that the potential function is

convex. In 2003, Miklás Horváth got rid of the assump-
tion that the potential function must be convex (see [4]).
However, owing to the restriction of methods of study, the
foregoing results on Sturm-Liouville operators with ordi-
nary separated type boundary condition have not been ad-
dressed so far.

Stimulated by [1-12], in this article, we study the S-L
problem:

⎧⎨
⎩

−y′′ + v(x)y = λy, x ∈ [0, π]
y(0) cos α + y′(0) sin α = 0
y(π) cos β + y′(π) sin β = 0,

(1.2)

where v(x) is a single-well function (see definition 2.1),
α, β ∈ (0, π). Owing to the complicacy of the boundary
condition, it is very difficult to calculate the exact value
of eigenvalues to S-L problem (1.2). In this article, we fo-
cus on the estimate of the optimal lower bound of the gap
of the first two eigenvalues to S-L problem (1.2) and the
description about the form of the optimal potential func-
tion(see definition 2.2).

Meanwhile, under step potential function, we estab-
lish one-to-one relationship between the eigenvalues of S-
L problem (1.3) and the real roots of a class of algebraic
equation, which makes the approximate calculation of eigen-
values to S-L problem (1.3) into reality.
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The rest of this article is organized as follows. In section 2, we give the explicit form of the optimal potential function
of S-L problem (1.2). In section 3, Considering S-L problem:

⎧⎨
⎩

−y′′ + q(x)y = λy, x ∈ [0, π]
y(0) cos α + y′(0) sin α = 0
y(π) cos β + y′(π) sin β = 0,

(1.3)

where α, β ∈ (0, π) and

q(x) =
{

m, x ∈ [0, π/2]
n, x ∈ (π/2, π], (1.4)

where m and n are all real number. We establish an one-to-one relationship between the eigenvalues to the S-L problem
(1.3) and the nonnegative real roots to a class of algebraic equation. An example and numerical simulations are presented
in the final section.

2. The Optimal Potential Functions of Sturm-Liouville Operators

In this section, we will give the explicit form of the optimal potential function of S-L problem (2.1).
Definition 2.1 We call function v a single-well function on [0, π], if v is decreasing on [0, π/2] and increasing on

[π/2, π]. The notation below will be used through this article:

SW[0, π] = {v(x) : v(x) is a single − well function on [0, π]}.
Definition 2.2 Consider S-L problem

⎧⎨
⎩

−y′′ + v(x)y = λy, x ∈ [0, π]
y(0) cos α + y′(0) sin α = 0
y(π) cos β + y′(π) sin β = 0,

(2.1)

where v ∈ SW[0, π], α, β ∈ (0, π), λ1(v), λ2(v) are the first and the second eigenvalue to S-L problem (2.1), respectively.
Denote G(v) = λ2(v) − λ1(v). if there exists v0 such that

G(v0) = inf
v∈ SW[ 0, π]

G(v),

we call function v0 an optimal potential function of S-L problem (2.1).
Theorem 2.1(see[4]) For S-L problem

⎧⎨
⎩

−y′′ + v(x, t) = λy, x ∈ [0, π]
L1(y) = 0
L2(y) = 0.

(2.2)

Suppose that λn(t) is the n-th eigenvalue to S-L problem (2.2) and un(x, t) is corresponding to the n-th normalizing
eigenfunction, then

dλn(t)dt =
∫ π

0

∂v(x, t)∂tu2
n(x, t)dx.

Lemma 2.1 Suppose that u1(x), u2(x) are the first and the second eigenfunction of S-L problem (2.1), we can show
that u2(x)u1(x) is strictly monotonous decreasing on [0, π].

proof : Since u1(x) is the first eigenfunction of S-L problem (2.1), there are not zero points of u1(x) on [0, π], and we
can suppose u1(x) > 0 (u1(x) < 0 is similar). And because u2(x) is the second eigenfunction of S-L problem (2.1), there
exists only one zero point of u2(x) on [0, π], denoted by x0, then, u2(x) > 0, whilex ∈ [0, x0) and u2(x) < 0, whilex ∈
(x0, π]. Next, we show (u2(x)u1(x))′ < 0, foreveryx ∈ [0, π].

Since (
u2(x)u1(x)

)′
= u′

2(x)u1(x) − u′
1(x)u2(x)[u1(x)]2,

note that ∫ x

0

[u′′
2(x)u1(x) − u′′

1(x)u2(x)]dx = [u′
2(x)u1(x) − u′

1(x)u2(x)] − [u′
2(0)u1(0) − u′

1(0)u2(0)],
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with the boundary condition y(0) cos α + y′(0) sin α = 0 and α ∈ (0, π), we can obtain [u′
2(0)u1(0)− u′

1(0)u2(0)] = 0.
Considering u′′

2(x)u1(x) − u′′
1(x)u2(x) = (λ1 − λ2)u1(x)u2(x). Then, when 0 ≤ x < x0, we have(

u2(x)u1(x)
)′

= u′
2(x)u1(x) − u′

1(x)u2(x)[u1(x)]2 = 1u2
1(x)

∫ x

0

[(λ1 − λ2)u1(x)u2(x)]dx < 0.

On the other hand,∫ π

x

[u′′
2(x)u1(x) − u′′

1(x)u2(x)]dx = [u′
2(π)u1(π) − u′

1(π)u2(π)] − [u′
2(x)u1(x) − u′

1(x)u2(x)],

with the boundary condition y(π) cos β +y′(π) sin β = 0 and β ∈ (0, π), we can derive u′
2(π)u1(π)−u′

1(π)u2(π) =
0. So, ∫ π

x

[u′′
2(x)u1(x) − u′′

1(x)u2(x)]dx = −[u′
2(x)u1(x) − u′

1(x)u2(x)].

Then

(u2(x)u1(x))′ = u′
2(x)u1(x) − u′

1(x)u2(x)[u1(x)]2 = −1u2
1(x)

∫ π

x

[u′′
2(x)u1(x) − u′′

1(x)u2(x)]dx.

Note that u′′
2(x)u1(x) − u′′

1(x)u2(x) = (λ1 − λ2)u1(x)u2(x). Then, when x0 < x ≤ π, we have

(u2(x)u1(x))′ = u′
2(x)u1(x) − u′

1(x)u2(x)[u1(x)]2 = −1u2
1(x)

∫ π

x

[(λ1 − λ2)u1(x)u2(x)]dx < 0.

This completes the proof.
Lemma 2.2 Assume that u1(x), u2(x) are the first and the second normalizing eigenfunction of S-L problem (2.1),

respectively, then the equation u2
1(x) = u2

2(x) has at least one solution and at most two solutions in (0, π).
proof: (1) There is at least one solution to the equation u2

1(x) = u2
2(x) in (0, π).

Since
∫ π

0
u2

1(x)dx =
∫ π

0
u2

2(x)dx = 1, there is at least one solution to the equation u2
1(x) = u2

2(x) in (0, π).
(2)There is at most two solutions to the equation u2

1(x) = u2
2(x) in (0, π).

By the lemma 2.1, u2
2(x)u2

1(x) is strictly monotonous decreasing in (0, x0), and strictly monotonous increasing in
(x0, π). Assume that x1, x2, (0 < x1 < x2 < x0) are two different solutions to the equation u2

1(x) = u2
2(x), then

u2
2(x1)u2

1(x1) = u2
2(x2)u2

1(x2),

which is a contradiction. So, in (0, x0), there exists at most one solution to the equation u2
1(x) = u2

2(x). Using similar
arguments as above, we can show that there exists at most one solution of the equation u2

1(x) = u2
2(x) in (x0, π). So,

there is at most two solutions to the equation u2
1(x) = u2

2(x) in (0, π). This completes the proof of Lemma 2.2.
Definition 2.3 (1) If for a given potential function v(x) ∈ SW[0, π], the equation u2

1(x) = u2
2(x) has two solutions in

(0, π), where u1(x), u2(x) are the first and the second normalizing eigenfunction of S-L problem (2.1), then, we call the
potential function v(x) the first class of potential function, and the set of all these potential functions is denoted by PFI .
(2) If for a given potential function v(x) ∈ SW[0,π], the equation u2

1(x) = u2
2(x) has only one solution in (0, π), where

u1(x), u2(x) are the first and the second normalizing eigenfunction of S-L problem (2.1), then we call the potential
function v(x) the second class of potential function, and the set of all these potential functions is denoted by PFII .

By Lemma 2.1 and 2.2, we can easily obtain the following result.
Lemma 2.3 Suppose that u1(x), u2(x) are the first and the second normalizing eigenfunction of S-L problem (2.1),

then
(1) If v ∈ PFI , then for u1(x) and u2(x) there is only one case to consider, that is, there exist x+, x− (0 < x− < x+ ≤ π)
such that {

u2
2(x) − u2

1(x) > 0, x ∈ (0, x−)
⋃

(x+, π)
u2

2(x) − u2
1(x) < 0, x ∈ (x−, x+).

(2) If v ∈ PFII , then, then for u1(x) and u2(x) there are only following two cases to consider.
(i) Existing x∗ ∈ (0, π) such that {

u2
2(x) − u2

1(x) > 0, x ∈ (0, x∗)
u2

2(x) − u2
1(x) < 0, x ∈ (x∗, π).

(ii)Existing x∗ ∈ (0, π) such that {
u2

2(x) − u2
1(x) < 0, x ∈ (0, x∗)

u2
2(x) − u2

1(x) > 0, x ∈ (x∗, π).
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Lemma 2.4 Define AM = {V : 0 ≤ V ≤ M, V ∈ SW[0, π]}, then AM ⊂ SW[0, π] and AM is a convex set.
proof: By the definition of AM , AM ⊂ SW[0, π] is obvious. Next, we show that AM is a convex set. For all v1, v2 ∈

AM and for every t ∈ [0, 1], we have 0 ≤ tv1 + (1 − t)v2 ≤ M . And because tv1 ∈ SW[0, π], (1 − t)v2 ∈ SW[0, π], we
have tv1 + (1 − t)v2 ∈ SW[0, π]. Thus, tv1 + (1 − t)v2 ∈ AM , namely, AM is a convex set.

Lemma 2.5 Define v(x, t) = tv1(x) + (1 − t)v0(x), t ∈ [0, 1], v0(x), v1(x) ∈ AM , where v0(x) is the optimal
potential function, λ1(t), λ2(t) are the first and the second eigenvalue to S-L problem

⎧⎨
⎩

−y′′ + v(x, t) = λy, x ∈ [0, π]
y(0) cos α + y′(0) sin α = 0
y(π) cos β + y′(π) sin β = 0.

Then, we have

d(λ2(t) − λ1(t))dt =
∫ π

0

[v1(x) − v0(x)][u2
2(x, t) − u2

1(x, t)]dx

and

0 ≤ d(λ2(t) − λ1(t))dt|t=0 =
∫ π

0

[v1(x) − v0(x)][u2
2(x) − u2

1(x)]dx.

Proof: By theorem 2.1, we have

d(λ2(t) − λ1(t))dt =
∫ π

0

∂v(x, t)∂t[u2
2(x, t) − u2

1(x, t)]dx =
∫ π

0

[v1(x) − v0(x)][u2
2(x, t) − u2

1(x, t)]dx.

When t = 0, we have v(x, t) = v(x, 0) = v0(x). Since v0(x) is the optimal potential function, λ2(v(x, 0)) −
λ1(v(x, 0)) reaches minimum, thus, along with the increase of t, λ2(v(x, t)) − λ1(v(x, t)) will be increase, so

0 ≤ d(λ2(t) − λ1(t))dt|t=0 =
∫ π

0

[v1(x) − v0(x)][u2
2(x) − u2

1(x)]dx.

This finishes the proof.
Next, we give the first main result of this article.
Theorem 2.2 Suppose that λ1(v), λ2(v), (v ∈ AM ) are the first and the second eigenvalue to S-L problem (2.1), then

the optimal potential function of S-L problem (2.1) must be a step function on [0, π].
proof: By [4], the optimal potential function of S-L problem (2.1) exists, when v(x) ∈ AM , and we denote it by v0.

Next, we will discuss the explicit form of v0 from the following two cases.
Case1. v0 ∈ PFI

By lemma 2.3, there exist x+ and x− (0 < x− < x+ < π) such that
{

u2
2(x) − u2

1(x) > 0, x ∈ (0, x−)
⋃

(x+, π)
u2

2(x) − u2
1(x) < 0, x ∈ (x−, x+), (2.3)

where, u1(x), u2(x) are the first and the second normalizing eigenfunction. Here, only to consider the following two
cases.

(1) x− ≤ π2 < x+(x− < π2 ≤ x+ is similar)
Let

v1(x) =
{

v0(x−), x ∈ [0, π/2]
v0(x+), x ∈ (π/2, π].

Obviously, v1(x) ∈ AM , and {
v1(x) − v0(x) ≤ 0, x ∈ (0, x−)

⋃
(x+, π)

v1(x) − v0(x) ≥ 0, x ∈ (x−, x+). (2.4)

By lemma 2.5, the following result
∫ π

0

(v1(x) − v0(x))(u2
2(x) − u2

1(x))dx ≥ 0
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holds. That is

∫
(0,x−)

⋃
(x+,π)

(v1(x) − v0(x))(u2
2(x) − u2

1(x))dx +
∫

(x−,x+)

(v1(x) − v0(x))(u2
2(x) − u2

1(x))dx ≥ 0. (2.5)

By (2.3) and (2.4), (2.5) holds if and only if v0(x) = v1(x). Thus, v0(x) must be a step function with the following
form:

v0(x) =
{

v0(x−), x ∈ [0, π/2]
v0(x+), x ∈ (π/2, π].

(2) π/2 < x− (x+ < π/2 is similar)
Let

v1(x) =
{

v0(π2), x ∈ [0, x−]
v0(x+), x ∈ (x−, π].

Analogously, by the same methods of (1), we can obtain v0 = v1. Furthermore, we can also choose

v1(x) =
{

0, x ∈ [0, x−]
M, x ∈ (x−, π].

By lemma 2.5, we have ∫ π

0

(v1(x) − v0(x))(u2
2(x) − u2

1(x))dx ≥ 0,

that is
0 ≤ ∫ π

0
(v1(x) − v0(x))(u2

2(x) − u2
1(x))dx

= −v0(π2)
∫ x−
0

(u2
2(x) − u2

1(x))dx
+(M − v0(x+))

∫ π

x−
(u2

2(x) − u2
1(x))dx.

(2.6)

Then, by the definition of x−, we have ∫ x−

0

(u2
2(x) − u2

1(x))dx > 0. (2.7)

While, ∫ π

0

(u2
2(x) − u2

1(x))dx = 0,

so, ∫ π

x−
(u2

2(x) − u2
1(x))dx < 0. (2.8)

By (2.7) and (2.8), (2.6) holds if and only if v0(π2) = 0 and v0(x+) = M . Namely, v0(x) must be a step function as
following

v0(x) =
{

0, x ∈ [0, x−]
M, x ∈ (x−, π].

Case 2. v0 ∈ PFII . (By lemma 2.3, we only consider case (i), and case (ii) is similar)
(1) 0 < x∗ ≤ π/2
We choose

v1(x) =
{

v0(x∗), x ∈ [0, π/2]
M, x ∈ (π/2, π]. (2.9)

Analogously, by lemma 2.5, we have

0 ≤
∫ π

0

(v1(x) − v0(x))(u2
2(x) − u2

1(x))dx

=
∫ x∗

0

(v1(x) − v0(x))(u2
2(x) − u2

1(x))dx +
∫ π

x∗
(v1(x) − v0(x))(u2

2(x) − u2
1(x))dx. (2.10)
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By (2.9) and the definition of x∗, (2.10) holds if and only if v0(x) = v1(x), namely, v0(x) must be a step function as
following

v0(x) =
{

n1, x ∈ [0, π/2]
n2, x ∈ (π/2, π].

(2) x∗ > π/2
Now let

v1(x) =
{

0, x ∈ [0, x∗]
M, x ∈ (x∗, π],

by the lemma 2.5, we can obtain that

0 ≤
∫ π

0

(v1(x) − v0(x))(u2
2(x) − u2

1(x))dx

=
∫ x∗

0

(v1(x) − v0(x))(u2
2(x) − u2

1(x))dx +
∫ π

x∗
(v1(x) − v0(x))(u2

2(x) − u2
1(x))dx, (2.11)

because of 0 ≤ v0 ≤ M and the definition of x∗, (2.11) holds if and only if

v0(x) =
{

0, x ∈ [0, x∗]
M, x ∈ (x∗, π].

So, comprehensive case 1 and case 2, and the optimal potential function of S-L problem (2.1) must be a step function
on [0, π]. This completes the proof.

3. Eigenvalues of Sturm-Liouville Operators

In this section, we first establish an one-to-one relationship between the eigenvalues to the S-L problem (3.1) and the
nonnegative real roots to a class of algebraic equations, which made the approximate calculation of eigenvalues to S-L
problem (3.1) into reality.

we first consider S-L problem: ⎧⎨
⎩

−y′′ + q(x)y = λy, x ∈ [0, π]
y(0) cos α + y′(0) sin α = 0
y(π) cos β + y′(π) sin β = 0,

(3.1)

where α, β ∈ (0, π) and

q(x) =
{

m, x ∈ [0, x0]
n, x ∈ (x0, π].

For the sake of simplicity and convenience in the following expression, the notations below will be used in this section:

Cx(λ, y) = cos(
√

λ − xy), Sx(λ, y) = sin(
√

λ − xy),

Fn, β(λ) =
√

λ − n cos(
√

λ − nπ) sin β + sin(
√

λ − nπ) cos β,

Gn, β(λ) =
√

λ − n sin(
√

λ − nπ) sin β − cos(
√

λ − nπ) cos β,

We then have the following result.
Theorem 3.1 Eigenvalues to S-L problem (3.1) are corresponding to the nonnegative real roots of the following

algebraic equation√
λ − mCm(λ, x0) − cot αSm(λ, x0)(λ − m)Sm(λ, x0) +

√
λ − m cot αCm(λ, x0)

= Sn(λ, x0)Gn, β(λ) + Cn(λ, x0)Fn, β(λ)
√

λ − nSn(λ, x0)Fn, β(λ) −√
λ − nCn(λ, x0)Gn, β(λ)3.2

Proof: Since y(x) = c1 cos
√

λ − mx + c2 sin
√

λ − mx is the general solution to the boundary value problem:
{−y′′ + my = λy, x ∈ [0, x0]

y(0) cos α + y′(0) sin α = 0,
(3.3)

where m is a positive integer, α ∈ [0, π]. By the boundary value condition y(0) cos α + y′(0) sin α = 0, it follows that

c1 cos α + c2

√
λ − m sinα = 0.
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Then
c2 = −c1 cot α

√
λ − m.

So, the general solution of boundary value problem(3.2) can be written as

y1(x) = c1 cos
√

λ − mx − c1 cot α
√

λ − m sin
√

λ − mx.

For boundary value problem: {−y′′ + ny = λy, x ∈ (x0, π]
y(π) cos β + y′(π) sin β = 0,

(3.4)

similar to above methods, we can write the general solution of boundary value problem (3.3) as

y2(x) = d1 cos
√

λ − nx + d1

√
λ − n sin

√
λ − nπ sin β − cos

√
λ − nπ cos β

√
λ − n cos

√
λ − nπ sin β

+ sin
√

λ − nπ cos β sin
√

λ − nx.

Then, the solution of boundary value problem (3.1) can be further simplified as

y(x) =
{

y1(x), x ∈ [0, x0]
y2(x), x ∈ (x0, π]. (3.5)

The constants c1, d1 have to be chosen such that y(x) is C1−smooth at x0. This can be done if and only if the quotients
y′y, counted in x0 from both sides, are the same, that is, when√

λ − mCm(λ, x0) − cot αSm(λ, x0)(λ − m)Sm(λ, x0) +
√

λ − m cot αCm(λ, x0)
= Sn(λ, x0)Gn, β(λ) + Cn(λ, x0)Fn, β(λ)

√
λ − nSn(λ, x0)Fn, β(λ) −√

λ − nCn(λ, x0)Gn, β(λ), 3.6
the eigenvalues of S-L problem (3.1) are the nonnegative real solutions of equation (3.6). Theorem 3.1 is proved.

4. Example and Numerical Simulation

Figure 1 The first four eigenvalues in [0 ,2] Figure 2 All eigenvalues in R

In this section, we give an example for Theorem 3.1 and calculate the approximates of its eigenvalues.
We consider S-L problem ⎧⎨

⎩
−y′′ + q(x)y = λy, x ∈ [0, π]
y(0) cos π3 + y′(0) sin π3 = 0
y(π) cos π3 + y′(π) sin π3 = 0,

(4.1)

where

q(x) =
{

1, x ∈ [0, π/2]
0, x ∈ (π/2, π].

c© 2012 NSP
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By Theorem 3.1, the eigenvalues to S-L problem (4.1) are the nonnegative real roots of the following equation:

3
√

λ − 1 cos(
√

λ − 12π) −
√

3 sin(
√

λ − 12π)3(λ − 1) sin(
√

λ − 12π) +
√

3(λ − 1) cos(
√

λ − 12π)

=
√

3λ cos(
√

λ2π) + sin(
√

λ2π)
√

3λ sin(3
√

λ2π) −
√

λ cos(
√

λ2π) (4.2)

Using Matlab, we can calculate the approximates of nonnegative real roots to equation (4.2), thus, we obtain the
approximates of eigenvalues to S-L problem (4.1). Here, a straightforward calculation shows the approximates of the first
four eigenvalues: λ1 ≈ 0.2791, λ2 ≈ 0.4085, λ3 ≈ 0.4898, λ4 ≈ 1.3225 (see Figure 1). Meanwhile, we can validate
that the number of the eigenvalues to S-L problem (4.1) is infinite and all eigenvalues are nonnegative (see Figure 2).
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